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Global and local relaxation of a spin chain under exact Schrodinger
and master-equation dynamics
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We solve the Schrodinger equation for an interacting spin chain locally coupled to a quantum environment
with a specific degeneracy structure. The reduced dynamics of the whole spin chain as well as of single spins
is analyzed. We show that the total spin chain relaxes to a thermal equilibrium state independently of the
internal interaction strength. In contrast, the asymptotic states of each individual spin are thermal for weak but
nonthermal for stronger spin-spin coupling. The transition between both scenarios is found for couplings of the
order of 0.1 X AE, with AE denoting the Zeeman splitting. We compare these results with a master-equation
treatment; when time averaged, both approaches lead to the same asymptotic state and finally with analytical

results.
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I. INTRODUCTION

Various attempts have been made to account for thermo-
dynamical behavior of quantum systems [1,2]. Especially the
relaxation into an equilibrium state in a pure quantum world
does not seem to be feasible since Schrodinger dynamics is
reversible like the classical Hamiltonian dynamics. By intro-
ducing irreversibility into quantum mechanics one thus has
to face all the old difficulties.

One quite successful way to introduce relaxation behavior
into quantum mechanical models is to consider open systems
modeled by a quantum master equation [3,4] or the Lindblad
formalism [5-7]. In these approaches the influence of the
environmental system enters the Liouville—von Neumann
equation for the considered system via incoherent damping
terms. To deduce such a closed evolution equation several
approximations are necessary, e.g., the Born-Markov as-
sumption.

In the context of quantum thermodynamics irreversible
behavior has recently been found in classes of very small
bipartite quantum systems described by a pure Schrodinger
evolution only [8,9]. This approach does not need those spe-
cific assumptions about the environment. Instead, system and
environment are treated as a whole. Even in small bipartite
systems, consisting of a two-level system (“gas system”)
coupled to an environment (“container”’) of no more than
some hundred levels thermodynamical behavior is generic—
relaxation occurs to a theoretically predicted equilibrium
state (see [10]).

In the above mentioned scenarios the gas system was very
small (from two to five levels) and coupled to an environ-
ment without any structure or selectivity. In a more complex
situation the system under consideration (gas system) could
be constructed from several identical subsystems, e.g., the

*Electronic address: henrich@theol.physik.uni-stuttgart.de

1539-3755/2005/72(2)/026104(8)/$23.00

026104-1

PACS number(s): 05.30.—d, 05.70.Ln

system could be a spin chain. For such bipartite systems with
increased internal complexity the effect of the coupling to-
pology is not yet completely understood: If we couple a
chain of identical subsystems at one edge only to a quantum
environment as before, the question arises whether the whole
system will still relax into a thermal equilibrium state. Fur-
thermore, we are interested in whether and when the indi-
vidual subsystems are also in a thermal equilibrium state.

According to recent investigations on local temperature of
modular systems [11,12], we expect the same global as well
as local temperature in the system for weakly coupled
chains. In cases of a stronger coupling this may no longer be
the case (as shown by an open system approach [13]).

Those chain systems coupled to a quantum environment
will be treated as a closed system subject to Schrodinger
dynamics and will be compared to the modeling via a quan-
tum master equation. In particular, we will analyze chains
with different coupling types and strengths with respect to
their local as well as global thermal or nonthermal proper-
ties.

II. THEORETICAL BACKGROUND

A. The considered system

We consider chains of three identical quantum systems
described by the Hamiltonian

3 2

X . A
Hy= 2 Hip(p) + =2 (o + 1), (1)
=1 IM:I

Here the first sum contains the local Hamilton operators

[:I]OC(/.L) of the site. In our case the local Hamiltonian of site
M reads
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FIG. 1. Coupling topology of the spin chain to the quantum
environment.

N ~ 1
Hoo(u) =1+ E&Z(,U,) with u=1,2,3, (2)

where &, denotes the Pauli spin operator. Here and in the
following all energies are taken in units of the Zeeman split-
ting. The second sum refers to the next neighbor couplings
between the subsystems normalized by

1= \Ti{i, 3)

where n is the Hilbert space dimension of the chain. Thus, it
is possible to control the internal coupling strength by the
single parameter \ [see Eq. (1)] only, irrespective of the type
of coupling. In the following we compare two different in-
teractions, a random coupling

33

Fpp+1)=2 2 pidi(p) ® G(u+ 1), (4)
i=1 j=1

where the p;; are normally distributed random numbers in the
interval [-1,1], and a Heisenberg interaction,

3
B+ 1) =2 6(p) ® G(u+1). (5)

i=1

B. The environment

The model system described in the last section is now
coupled to an adequate environment:

A ~ K A
Hy=H+H.+ . (6)
ISS

The first term is the Hamiltonian of the chain, I-AIe refers to
the Hamiltonian of the environment and ise is the interaction
between system and environment. After normalizing fse via

I.=(1/n) \/Tr{ffe} [compare Eq. (3)] the external coupling
strength is controlled by the parameter « only. This system
environment coupling is taken to be small in all cases as a
precondition to allow for thermodynamic behavior. The in-
teraction will be chosen in such a way that it couples only to
one boundary of the system (see Fig. 1), say to the third spin
of the chain. Furthermore, the interaction should allow for
energy exchange between system and environment.
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In the following we will consider both a complete solu-
tion of the Schrodinger equation for system and environment

according to I-AImt as well as a quantum master equation,
simulating a corresponding bath coupling.

C. Hilbert space average approach

Let us start with the complete model under Schrodinger
dynamics. At first sight it may not seem clear how a totally
time reversible equation like the Schrodinger equation could
produce something like irreversible behavior. To clarify this
point we introduce some aspects of quantum thermodynam-
ics. A complete derivation of all aspects of this theory is
beyond the scope of this paper. Therefore we only sum up
some central aspects of this approach and refer the interested
reader to [9,14].

According to quantum thermodynamics (see [9]), the sys-
tem proper relaxes to a Gibbsian state whenever the density
of states of the environment is an exponential function of
energy; the latter is typical for many-body systems. We
model such a quantum environment here by a system (Fig. 1;
the width of the energy levels should indicate the degen-
eracy) of the eight energy levels E; with degeneracies given
by

Ne(ES) = N§2F: (7)

This may seem rather artificial, but the idea is as follows The
environment may possess a continuous spectrum, but due to
the weak coupling between system and environment the sys-
tem couples only to the resonant levels. Thus we can neglect
all the other levels. This environment is then expected to
induce on the spin chain a canonical state with the reciprocal
temperature [,

1 d

— =p=

kT E In N°(E) (8)

where kg is the Boltzmann constant. With the special degen-
eracy structure (7) this leads to B=In 2.

For a numerical test and to avoid any bias we pick for fse
a Hermitian random matrix from an ensemble with the dis-
tribution [15]

~ 1 )
P(l) = =TI 9)
N

Theoretical predictions

In contrast to the master-equation approach, the dynamics
of the closed system (spin chain and environment) is purely
Schrodinger type. The von Neumann entropy of the com-
pletely closed system thus remains constant. But by splitting
up the whole system into two parts, a small system taken to
be the spin chain and a large one, the environment, the von
Neumann entropy of the parts can change in time. As a mat-
ter of fact, the small system shows a thermodynamical be-
havior if two restrictions are met.

(a) The coupling between the small system and the envi-
ronment should be small, i.e., the energy contained in the
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interaction has to be much smaller than the local energies,

(L) < (H).(H,) (10)

which guarantees that the spectrum of the environment is not
disturbed too much.

(b) The Hilbert space of the environment should be very
large compared to the Hilbert space of the small system.
Conversely, all systems meeting these conditions may be
called thermodynamical.

The concrete form of the interaction defines an accessible
region within the whole Hilbert space, selected by the initial
state. Using a model with full energy exchange between sys-
tem and environment (canonical situation) only one supple-
mentary condition remains active, the overall energy conser-
vation defining the accessible region. By a topological
investigation of the Hilbert space (see [9]), the details of
which are beyond the scope of this paper , it is possible to
show that the state of the complete system will enter a very
large region (the dominant region) within the accessible re-
gion, for which the system under consideration is in a state
with approximately maximum von Neumann entropy. The
respective energy distribution of the small system in this
dominant region, i.e., the probability to find the small system
in an energy eigenstate E (no degeneracy) for an initial state
with a sharp energy is then given by

NA{E7)

(11)
N tot

WY(ES) =

[for a complete derivation of Eq. (11) see [9,14]]. E; is the
ith energy level of the spin system, E; the corresponding
energy level in the environment with the degeneracy N;(E;),
and Nyo=3% N,(E?) the total number of levels in the envi-
ronment.

D. Master-equation approach

Master equation approaches describe the dynamics of
open systems. They have been widely applied to describe
system bath models, in particular in quantum optics [3].
Their derivation is standard and can be found in several text-
books. However, since our system, the spin chain, has an
internal structure and since only one of the boundary spins
directly couples to the bath, special care must be taken.

The entire dynamics of the system coupled to the bath is
given by the Liouville-von Neumann equation, from which
the Nakajima-Zwanzig equation can be derived [3]. Assum-
ing that the bath is in a thermal state,

oPHe

= i 12
Pe Z (12)

an expansion of the latter up to second order in the system-
bath coupling reads
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dp L ' ’ 7 7 '
d_ts == l[Hs’ps] - f dt Tre[lse’[lse(t - t)9ps ® pe]]’
0

(13)

where p, is the reduced density matrix of the spin system and

fse(t), the system bath interaction in the interaction picture,
reads

ise(t) — ei(H5+He)tisee_i(H5+He)t, (14)

the time dependence of which can be computed in the eigen-

basis of I-AIS and I:Ie. Applying, as usual, the Markov approxi-
mation, the integral of (13) can be computed and the follow-
ing form of the damping rates is found:

e itAp])+ AT - (Pp.A) + (pFA) - (Ap. "),
(15)
where
A=1(1) e 12) ® 6,3). (16)

As can be seen the environment has been locally coupled to
spin 3 only.

Denoting the energy eigenvalues and eigenvectors of the
spin system by Eé and |i), respectively

H{iy= Ej]i), (17)

and defining wijzﬁ(Ef—EJs-), the transition matrices I'“ have

the following matrix representation in the eigenbasis of H.:
r

1
KWAU for w; >0, (18)
(T =1
w;B,
eYjiPe
KWAﬁ for w; <0, (19)
ewijﬁe
KmAij for w; >0, (20)
=y <
1
KWAU for w; <0. (21)
\

Note that by virtue of Eq. (14) the real damping rates of Eq.
(18)—(21) only appear if the transition matrices I'“’* are rep-

resented in the eigenbasis of I:IS. Therefore, simply writing
down Lindblad damping terms [16] for spin 3, the one which
directly couples to the bath, would in general, lead to wrong
results [17]. However, if the coupling between the spins in
the chain is small enough, additional approximations can be
made and one will obtain the Lindblad type damping rates
for spin 3 [18].
It should also be mentioned that the thermal state

e PHs

Z

S

Ps= (22)

is the stationary and therefore asymptotic solution of Eq.
(15).
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III. NUMERICAL RESULTS

A. Spectral temperature

We will use as a measure to characterize the asymptotic
state of the spin system and the single spins a “spectral tem-
perature” defined as

o (1 WO+WM> E(W +W,11>an,1 InWw,
kpT =t 2 E,-E,_,

s

(23)

where W, is the probability to find the system at the nth
energy level E,, and M is the highest and O the lowest energy
level. The main idea here is to assign a Boltzmann factor to
each pair of neighboring energy levels. The spectral tempera-
ture then simply is the average over all these factors weighed
by the corresponding occupation probabilities. This spectral
temperature also exists in nonequilibrium situations but co-
incides with the standard definition of temperature (e.g.,
[19]) only for a canonical state.

For the calculation of the spectral temperatures according
to Eq. (23) we insert for W, the long time average {(p}"(¢)), of
the respective occupation probability.

B. Schrodinger dynamics

To demonstrate the relaxation behavior of the spin chain
under Schrodinger dynamics we have diagonalized the total

Hamiltonian H,, [see Eq. (9)] and solved the exact

Schrodinger equation

d N
d_t| Phot(1)) = = gHtot| Po(tg=0)). (24)

The initial state |(fy)) has been taken as a product state
of the spin chain and the environment. From the density
matrix p,(t)=|i(t)){¢(t)| we trace out the environment and
transform the resulting reduced density matrix into the eigen-
basis of the spin system. The time evolution of this reduced
density matrix p,(7) is plotted in Fig. 2 for an internal random
coupling and in Fig. 3 for a Heisenberg coupling. (We re-
strict our analysis to A >0, the antiferromagnetic case. Cor-
responding results can be obtained for A <0.)

Both evolutions have been obtained with the coupling pa-
rameters k=0.001 and A=0.4. The horizontal lines are the
probabilities as expected from Eq. (11). As can be seen, for
both internal couplings, the spin system relaxes into a state
which is in accordance with Eq. (11). The probability fluc-
tuations can be interpreted as a finite size effect of the envi-
ronment.

1. Global and local temperatures

Now that we have demonstrated the relaxation of the spin
chain into a thermal equilibrium state, we want to analyze
the relaxation behavior of the spinchain depending on the
internal interaction strength A. The approach of Sec. II C is
independent of the internal structure of the small system.
Thus the relaxation behavior should be independent of \ and
the temperature of the spin chain should be identical to that
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FIG. 2. Relaxation of the spin chain s into equilibrium under
Schrodinger dynamics for A=0.4 and k=0.001 with a random in-
teraction. The horizontal lines are the expected probabilities from
(11) to find the system at the corresponding energies. These are in
good accordance with the time-averaged values of p,(7). N and k are
energies taken in units of the Zeeman splitting. [Note that W"(EZ)
=WA(EY), Eq. (11).]

induced by the environment 7°=1/In2 [see Eq. (7)]. To
specify the temperature of the spin chain 7° we use the
“spectral temperature” defined in (23). We compare the spec-
tral temperature of the total spin chain to those of each indi-
vidual spin. For the local spectral temperature Tl;:C of a single
spin, (23) reduces to
W _
TL(L)C — & , (25)
In(W%) — In(Wl

where W# is the long time average of the probability to find
the uth spin at the energy E¥. These quantities are plotted as
a function of \ for a random interaction in Fig. 4 and for an
antiferromagnetic Heisenberg interaction in Fig. 5.

The spectral temperature of the spin chain 7° approaches
the temperature 7° imposed by the environment, irrespective
of the internal coupling strength . However, the spectral
temperature of each single spin is found to increase with

nn
Ps

0 2000 4000 6000 B000 10000 12000 14000 16000
t[——'sl

FIG. 3. Relaxation into equilibrium under Schrédinger dynam-
ics as of Fig. 2 but with antiferromag netic Heisenberg interaction.
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FIG. 4. Global and local temperatures as a function of \ for a
random interaction.

increasing N. The reason for this behavior is that the local
spin system is disturbed more and more with increasing A
although the whole spin system continues to reach a canoni-
cal state [12].

Especially for a Heisenberg coupled spin chain one can
verify analytically that for a canonical state with some re-
spective temperature, the local temperatures deviate more
and more with increasing \ (see Sec. IV). Note that for a
ferromagnetic Heisenberg coupling the spectral temperatures
of each spin show a different behavior: they decrease with
increasing \. In any case, they deviate from 7°.

To verify that the state of the total spin chain p, is indeed
canonical we test the off diagonal elements. All absolute val-
ues are smaller than 107*. Therefore we argue that the state
of the total spin chain is indeed a canonical one for all prac-
tical purposes and its spectral temperature can be identified
as the thermodynamic temperature.

The deviation of the local spectral temperatures from the
temperature of the whole spin chain can also be understood
by analyzing the correlation C between the spins

C=Tr{[{p1 (1)), @ {pa(1)), ® {p3(0)), = {p (1)), J}.  (26)

The angular brackets ¢ ), denote the time average of the den-
sity matrices of the single spins (p,) and the spin system

]

kpT{AE]

FIG. 5. Global and local temperatures as a function of \ for
antiferromagnetic Heisenberg interaction.
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FIG. 6. Correlation C [Eq. (26)] as a function of \ for a random
interaction.

(py). Due to increasing \ the spins are more and more corre-
lated. This correlation causes an increase of the local entropy
which leads to an increased spectral temperature of each in-
dividual spin. Figure 6 shows C as a function of N\ for a
random interaction and Fig. 7 for a antiferromagnetic
Heisenberg interaction.

As can be seen from both figures, the correlations C in-
crease with increasing \. The ferromagnetic Heisenberg cou-
pling also show increasing correlations in the considered
ranges of \ and T~.

2. Master equation

We have solved the master equation of Sec. I D with the
same values for the parameters A=0.4 and «=0.001 as for
the Schrodinger dynamics. The corresponding relaxation into
equilibrium is shown in Fig. 8 for a random coupling and in
Fig. 9 for the antiferromagnetic Heisenberg coupling.

The horizontal lines denote, again, the equilibrium state,
which the spin system should reach according to Eq. (11).
The state obtained via the master equation with only one spin
coupled directly to the bath approaches the same equilibrium
state as the Schrodinger dynamics. Also the off diagonal el-

002 N L n 1 L A L
0.1 0.15 02 025 03 0.35 04 045 o5

A[AES)

FIG. 7. Correlation C [Eq. (26)] as a function of \ for a Heisen-
berg interaction.
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FIG. 8. Time evolution of p* under a master equation with ran-
dom interaction. The equilibrium reached is the same as that under
Schrodinger dynamics (Fig. 2) and the one predicted by Eq. (11)
(horizontal lines).

ements are damped away. Asymptotically both methods
show, under the analyzed conditions, the same behavior
whereas the short time behavior is difficult to compare.

3. Global and local temperatures

As for the Schrodinger dynamics we now study the global
and local states of the spin chain in dependence of the pa-
rameter A. We have calculated the spectral temperature (24)
for the whole chain and for each individual spin (25). The
results are plotted in Fig. 10 for a random interaction and in
Fig. 11 for an antiferromagnetic Heisenberg interaction.

In both cases the temperature of the whole spin chain 7°
reaches the same value as the temperature of the environ-
ment 7°=1.44. For weak spin-spin coupling (A < 1) the local
spectral temperature of each spin is approximately the same
as the one of the whole chain. As for the Schrodinger dy-
namics with increasing N\ the local spectral temperature of
each spin rises. In particular, the local temperature of the
spin in the middle of the chain, spin 2, increases more rap-
idly than those at the boundaries.

05 T . v T T T

€3]

nn
Ps

1 1 L : i

6000 00 G0N0 12000 14000 16000
t{zxpe]

FIG. 9. Time evolution of p* under a master equation with an-
tiferromagnetic Heisenberg interaction. (compare Fig. 3).
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FIG. 10. Spectral temperatures under a master equation with
random interaction as function of A. The solid line is the spectral
temperature 7° of the total spin chain. The dashed line is the local
temperature 7' of spin 1, the narrower dashed line 75 the one of
spin 2, and the dotted line 7%5° the one of spin 3.

IV. ANALYTICAL RESULTS

Finally we want to compare the numerical results shown
before with the analytic solutions for the Heisenberg coupled
spin chain. We start from a density matrix pg(B,\) for the
whole spin chain in a canonical state. Transforming pg(8,\)
into the product basis, one can get the reduced density ma-
trices of the single spins p,(B8,\). We have calculated the
local spectral temperature for each spin using Eq. (23) in
dependence on B and \. The result is shown in Fig. 12 (with
the same global inverse temperature S=In2 as for the nu-
merical calculations) and is in good agreement with our nu-
merical results (compare with Figs. 5 and 11, respectively).

To analyze the analytical solution for the correlation mea-
sure C(B,\) we have used again (26) with the analytical
density matrices pg(B,\) and p,(B.\). Figure 13 shows
C(B,\) for the global inverse temperature S=In 2. Again the
analytical result is in very good accordance with our numeri-

8 T T T T T
//_.-'
TH k
;
4
/
— gl / p
| /
4 /
. /
B 5} £ 4
2
.»//
al Tzloc e E
’/"
P
3l e e 4
../"’ ”
P Tloc _ ploc
2} o 23—
s
01 0.15 02 025 0.3 0.35 04 0.45 05

FIG. 11. Spectral temperatures under a master equation with
antiferromagnetic Heisenberg interaction in dependence on \ (com-
pare Fig. 10).

026104-6



GLOBAL AND LOCAL RELAXATION OF A SPIN CHAIN...

T1°C and Ti¢ ke T[AE]
8 )
[
7 ','
[
________ T2loc p ,,'
r
5 /l
;
4 ’/
3 //'
2 ___,/’
_________________ T
- AAES
“0.4 -0.2 0.2 0.4 [ ]

FIG. 12. Analytical results for local spectral temperatures with
the global inverse temperature B=In 2 as function of A for ferro-
magnetic (A<<0) and antiferromagnetic (A>0) Heisenberg

coupling.

cal results (compare with Fig. 7). An interesting point is that
the correlations C also increase in the ferromagnetic case
although it is known that there exists no nearest neighbor
entanglement [20].

Figure 14 shows C(B,\) as a function of 8 and \. C
increases with increasing 8 and A in the antiferromagnetic
case as one would expect because of the entanglement in the
spin chain for low temperatures. For the ferromagnetic cou-
pling one can see a bump depending on B and \. For low
temperatures (large 8) C decreases and vanishes for 7=0.

Presently it is not quite clear why this bump occurs in the
ferromagnetic case for intermediate temperatures. It can be
shown, that the crest of the ferromagnetic bump is a function
of B and N\. The behavior for high temperatures is the same
for the ferromagnetic as well as the antiferromagnetic case:
C is vanishing because the local states and the global state
will be a totally mixed one.

Note that C is not an entanglement measure. C checks
whether pg(8,\) is factorizable by the reduced density ma-
trices p,(B,\). Therefore C=0 in the ferromagnetic case for
T>0 indicates on one hand that the product basis differs
from the eigenbasis of the spin chain [11] (which is a pure
quantum mechanical effect) and otherwise whether a local
thermodynamical description is possible.

C

0.15

0.125

0.075

0.025

. i 8
-0.4 -0.2 0.2 0.4 AMAET

FIG. 13. Correlations C as function of N(B=1In 2) for ferromag-
netic (A <<0) and antiferromagnetic (A >0) Heisenberg coupling.

PHYSICAL REVIEW E 72, 026104 (2005)

FIG. 14. Correlations C as a function of 8 and \ for ferromag-
netic (\<<0) and antiferromagnetic (A >0) Heisenberg coupling.

V. SUMMARY AND CONCLUSION

The main motivation of this paper has been to analyze the
thermodynamic behavior of one part (“the system”) within a
bipartite quantum system subject to Schrodinger evolution.
Such effective relaxation to equilibrium is predicted to occur
under rather general conditions. Nevertheless deviations are
not excluded. Here we have been interested in (spatially)
selective system-environment couplings and in the effect of
further partitioning of the system under consideration.

For this purpose we have studied a spin chain consisting
of three interacting spins coupled locally to a quantum envi-
ronment. Two different spin-spin coupling types have been
examined: a random and a Heisenberg coupling. For both we
have solved the exact Schrodinger equation and analyzed the
reached equilibrium states. We showed that the spin system
relaxes into a thermal equilibrium state, which is in accor-
dance with the state one would expect from quantum ther-
modynamics. Temporal fluctuations persist, though, and are a
result of the still comparatively small environment.

The spin chain always reaches the predicted state inde-
pendently of the internal coupling type and strength. Thus we
can conclude that the internal structure of a small system as
well as locality of the coupling to a quantum environment
does not effect the relaxation behavior. The results also show
that the overall state reached is a canonical one and thus the
spectral temperature of the total spin chain can be identified
as the “real” (thermodynamic) temperature of the system.

On the other hand, the spectral temperature of each indi-
vidual spin does depend on the internal coupling strength, an
effect which has been traced back to increased correlations
of each spin with its neighbor(s). This causes an increase of
the local entropy which mimics a higher spectral tempera-
ture. So our conclusion is that for stronger internal couplings
the local spin states are nonthermal states [21], indicating
that the global temperature ceases to be available also lo-
cally.

For the antiferromagnetic Heisenberg spin chain, we have
found that single spins are approximately in thermal states up
to coupling strengths A= 1.5. This is in agreement with the
results in [22]. Also the comparison with the analytical solu-
tion shows no differences with the numerical results for the
reached equilibrium states.

A further motivation of this paper has been to compare the
well-known Markovian master equation approach with the
exact Schrodinger dynamics. We have found, that in all con-
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sidered cases both approaches lead to the same asymptotic
result, i.e., equilibrium states of canonical form. The analysis
of the short time dynamics, e.g., the relaxation times, etc., for
the considered approaches should be an interesting topic for
future research.
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ACKNOWLEDGMENTS
We thank H. Schmidt, M. Stollsteimer, F. Tonner, and C.

Kostoglou for fruitful discussions. We thank the Deutsche
Forschungsgemeinschaft for financial support.

[17J. V. Neumann, Z. Phys. 57, 30 (1929).

[2] G. Lindblad, Non-Equilibrium Entropy and Irreversibility,
Mathematical Physics Studies Vol. 5 (Reidel, Dordrecht,
1983).

[3] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).

[4] U. Weiss, Quantum Dissipative Systems, 2nd ed. (World Sci-
entific, Singapore, 1999).

[5] A. Kossakowski, Bull. Acad. Pol. Sci., Ser. Sci., Math., Astron.
Phys.. 20, 1021 (1972).

[6] G. Lindblad, Commun. Math. Phys. 40, 147 (1975).

[7] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math.
Phys. 17, 821 (1976).

[8] J. Gemmer, A. Otte, and G. Mahler, Phys. Rev. Lett. 86, 1927
(2001).

[9] J. Gemmer, M. Michel, and G. Mahler, Quantum Thermody-
namcis: Emergence of Thermodynamic Behavior within Com-
posite Quantum Systems, Lecture Notes in Physics Vol. 657
(Springer, Berlin, 2005).

[10] P. Borowski, J. Gemmer, and G. Mahler, Eur. Phys. J. B 35,
255 (2003).

[11] M. Hartmann, G. Mahler, and O. Hess, Phys. Rev. Lett. 93,
080402 (2004).

[12] M. Hartmann, G. Mahler, and O. Hess, Phys. Rev. E 70,
066148 (2004).

[13] M. Michel, M. Hartmann, J. Gemmer, and G. Mahler, Eur.
Phys. J. B 34, 325 (2003).

[14] J. Gemmer and G. Mabhler, Eur. Phys. J. B 31, 249 (2003).

[15] M. L. Mehta, Random Matrices (Academic Press, Boston,
1991).

[16] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).

[17] K. Saito, S. Takesue, and S. Miyashita, Phys. Rev. E 61, 2397
(2000).

[18] V. Capek and 1. Bravik, Physica A 294, 388 (2001).

[19] L. D. Landau and E. M. Lifschitz, Statistische Physik, 3rd ed.
(Akademie-Verlag, Berlin, 1971).

[20] M. C. Arnesen, S. Bose, and V. Vedral, Phys. Rev. Lett. 87,
017901 (2001).

[21] M. Hartmann, G. Mahler, and O. Hess, e-print cond-mat/
0410526.

[22] M. Hartmann, G. Mahler, and O. Hess, J. Phys. Soc. Jpn. (un-
published).

026104-8



